Brian D Brown, PhD
img_Brian D Brown
PROFESSOR | Genetics and Genomic Sciences
PROFESSOR | Dermatology
Research Topics
Antigen Presentation, Autoimmunity, Cancer, Cellular Immunity, Dendritic Cells, Gene Discovery, Gene Expressions, Gene Regulation, Gene Therapy, Gene editing, Genomics, Immunological Tolerance, Immunology, Inflammation, Macrophage, Molecular Biology, RNA, RNA Splicing & Processing, Stem Cells, T Cells, Tolerance, Transcriptional Activation and Repression
Multi-Disciplinary Training Area
Genetics and Genomic Sciences [GGS], Immunology [IMM]
Specific Clinical/Research Interests:
Immunology; Cancer; Inflammation; Innate Immunity; Biotechnology; Molecular Biology; Gene Regulation;

Summary of Research Studies:
A major focus of our work is aimed at identifying factors that control immunity and tolerance, and utilizing this information for developing therapeutic strategies that can direct antigen-specific immune responses. We helped to identify some of the transcriptional programs that regulate dendritic cell differentiation and function (Miller et al. Nat Immunol 2012), and we discovered a pathway controlling the innate response to nucleic acids, which involves the microRNA miR-126, and the main VEGF receptor, VEGFR2 (Agudo et al. Nat Immunol 2014). We are now using a new technology we developed, called the Jedi, to probe the interactions between T cells and tissues at a granular level, and learning how the tissue controls immune responses (Agudo et al. Nat Biotech 2015). This work has important implications for the development of autoimmunity as well as cancer immunology.

Our lab also has a strong emphasis in the generation of new technologies for experimental and therapeutic applications. We led the development of a novel gene targeting technology, which is now widely used for enhancing vector and virus-based drugs in applications ranging from the treatment of genetic diseases to cancer therapy to viral vaccines (Brown et al. Nat Med 2006, Brown et al. Nat Biotech 2007, Brown and Naldini. Nat Rev Gen 2009). We also developed the first genome-wide technology to measure miRNA activity and function at single cell resolution (Mullokandov, Baccarini, Ruzo et al. Nat Meth 2012), and aided in the invention of an improved method for deep sequencing small RNAs (Jayaprakash et al. Nucl Acid Res 2011). We helped develop a new platform for predicting the immune systems response to 100s of drugs (Kidd, Wroblewska et al. Nat Biotech. 2016).

Postdoctoral and graduate projects are available involving: (i) cancer immunology and immunotherapeutics, (ii) the discovery of novel gene expression networks in the immune system, and (iii) the development of novel technologies and therapeutics.

BSc, University of Guelph

Fellowship, San Raffaele Scientific Institute

PhD, Queen's University

Physicians and scientists on the faculty of the Icahn School of Medicine at Mount Sinai often interact with pharmaceutical, device, biotechnology companies, and other outside entities to improve patient care, develop new therapies and achieve scientific breakthroughs. In order to promote an ethical and transparent environment for conducting research, providing clinical care and teaching, Mount Sinai requires that salaried faculty inform the School of their outside financial relationships.

Below are financial relationships with industry reported by Dr. Brown during 2023 and/or 2024. Please note that this information may differ from information posted on corporate sites due to timing or classification differences.

Consulting or Other Professional Services Examples include, but are not limited to, committee participation, data safety monitoring board (DSMB) membership

  • Noetik

Mount Sinai's faculty policies relating to faculty collaboration with industry are posted on our website. Patients may wish to ask their physician about the activities they perform for companies.